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We present a study of finite-size effects in a model exhibiting a first-order tem- 
perature-driven symmetry-breaking structural phase transition in the L• x 
cylindrical geometry in the L• ~ oe limit. Exact studies demonstrate the 
applicability of our scaling ansatz even in the one-dimensional limit, making 
this model ideal for studying finite-size effects. The scaling ansatz, similar to the 
previously developed ansatz for field-driven transitions, demonstrates that latent 
heat is crucial in driving these transitions. This ansatz is supported by a 2 x 2 
phenomenological transfer matrix based upon the symmetries of the system; this 
produces an analytic free energy which has the scaling form. Order parameter 
probability distributions show that the high- and low-temperature phases 
coexist only in a small finite-size-affected regime near the bulk transition 
temperature; this regime vanishes exponentially fast as L• diverges. 

KEY WORDS: First-order transitions; finite-size effects; coexistence; 
structural phase transition. 

1. I N T R O D U C T I O N  

Since the origins of statistical mechanics, one of the major  goals has been 

the unders tand ing  of phase transitions.  Much  progress has been made, 
especially for second-order  transi t ions:  the successes start with Onsager 's  

exact solut ion of the Ising model,  (1) and include the developments  made by 
scaling theories of critical phenomena ,  the idea of universality, and  the 

subsequent  renormal iza t ion  group concepts and  techniques. 
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The progress in the field of first-order transitions has not been as com- 
plete. It has been established that a first-order transition is characterized by 
an essential singularity in the free energy. (2) The only two exactly solved 
models with first-order transitions, the mean-field model and the wetting 
model of ref. 3, do not have such a singularity due to the incorrect account 
(mean-field) or absence (wetting model) of the appropriate droplet con- 
figurations. This singularity only occurs in the thermodynamic limit--for a 
finite-size system, the transition is "rounded" such that the free energy is 
analytic; this rounding regime vanishes as the system size diverges. (4-7)'3 
The exactly solvable model (3) demonstrates identical behavior. Due to 
the fact that the effects of the finite system are predominant only in a 
narrow region near the transition, we choose to refer to this as the 
"finite-size-affected" regime. 

It has been suggested (z) that because a system undergoing a first-order 
phase transition is characterized by an essential singularity, important 
physical consequences result. In equilibrium, the system will have no 
indications of the incipient phase, viz. there are no thermodynamically 
stable "precursors" to the transition. Simply phrased, coexistence occurs 
only at the transition. At all other temperatures, evidence of coexistence is 
an indication that the system is not in true equilibrium. For  finite systems, 
however, a form of coexistence may in principle be observed over a small 
but finite region. This has been previously demonstrated for hypercubic 
systems.(5) 

Our primary interest is in first-order temperature-driven symmetry- 
breaking transitions, viz. those relevant to structural phase transitions. (8) 
Although there are some exact results known for the Potts model, (9 11) 
there is no fully solved model with a symmetry-breaking transition 
exhibiting a first-order transition. The model we present (lz13) has the 
remarkable property (for the appropriate choice of parameters) that the 
exact thermodynamics of the system exhibits scaling properties (defined 
below) even in the limit of one dimension. This model utilizes vibrational 
entropy in determining the characteristics of the finite-size scaling regime: 
essentially, one parameter of the model allows us to adjust the bulk entropy 
change at the transition. The important finite-size features of symmetry- 
breaking transitions may be understood by examining only two of the 
eigenvalues of the associated transfer matrix, as we shall elucidate below; 
this model is ideal for demonstrating this behavior, due to the simplicity of 
the model (only two low-temperaature variants) and the rapid crossover to 
the bulk limit. 

3 See ref. 6 for review articles on finite-size scaling. 
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We begin by reviewing the arguments leading to the well- 
estabished ~4'7) finite-size scaling ansatz for field-driven transitions, 
appropriate for systems such as the Ising model at fixed temperature 
T <  T c, and extend these arguments to develop a similar ansatz for the case 
of temperature-driven symmetry-breaking transitions. The forms of the 
scaling equations are developed specifically for Lab-l• ~ systems, which 
may be studied using the transfer matrix (TM) formalism. In comparison 
with the field-driven case, an additional length scale is now necessary for 
the symmetry-breaking case, associated with spacings of the domain walls 
between high- and low-temperature phases. This length diverges at the 
transition as L• -~ ~ ,  while leaving the bulk correlation length finite. The 
finite-size scaling ansatz is valid in a "scaling regime" where L• is large 
enough that the properties of the finite system approach the limit of the 
bulk properties. In this regime, the finite-size-affected region (near the 
transition temperature TL, where the effects are most important) is small, 
and in general vanishes exponentially fast as L• diverges. ~7~ Our ansatz 
predicts the width of this regime; for the temperature-driven case, the 
entropy change that occurs at the transition plays an essential rote in 
defining this width. 

In Section 3 we present our model, one which controls the vibrational 
entropy in both the high- and low-temperature phases to allow for the 
direct study of the finite-size effects for symmetry-breaking transitions. 
Using a phenomenological reduction of the TM, we show that three of the 
eigenvalues are relevant to the transition (one for the high-temperature 
phase and two for the low-temperature variants), but that the important 
features of the finite=size rounding may be understood by examination of 
only two of the values: namely, the dominant eigenvalue )-0 and also the 
smallest of the eigenvalues that approach 2 o as L• diverges. Alternatively, 
the scaling is controlled by the shortest of the diverging lengths of 
the system. This phenomenological TM is similar to that proposed for 
transitions that do not exhibit symmetry breaking./3'7'14) 

Numerical results presented in Section 4 demonstrate that the finite- 
size scaling ansatz and the phenomenological reduction of the TM describe 
the exact results found for our model. We examine two versions of our 
system: in one case, the local order parameter may take on only five dis- 
crete values; second, we examine the case where the local order parameter 
is a continuous scalar variable. In the latter case, the remarkable scaling 
behavior for small L• is shown to be due to the change in the entropy 
associated with small-amplitude displacements, i.e., the vibrational entropy. 
The discrete version lacks these excitations, and thus has a smaller change 
of entropy; therefore the thermodynamic quantities show a considerably 
slower approach to the scaling regime. Numerical results for these cases 
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show that the finite-size scaling regime is well defined; within this tem- 
perature range the model shows evidence of coexistence. As L• increases, 
the entropy and the mean-squared order parameter become scaling 
functions, confirming the predictions of the finite-size scaling ansatz. 

Lastly, an analytic approach to the one-dimensional limit of our 
model demonstrates that anharmonic couplings incorporated in the model 
are essential for the remarkable scaling behavior. The transfer-integral (TI) 
problem for this model is transformed into the form of a Schr6dinger 
equation; the "ground-state energy" of this pseudo-Schr6dinger equation 
is directly related to the free energy of the 1D system. This pseudo- 
Schr6dinger equation is appropriate in the "displacive" limit, (15) where the 
local order parameter varies slowly between lattice sites. Near the tem- 
perature T1, the WKB approximation allows for a direct prediction of the 
gap at the near crossing of levels. Using this, we directly show the effect of 
the anharmonic coupling on the gap in the spectrum, thus conclusively 
demonstrating how the coupling generates a system with a vanishingly 
small finite-size-affected regime even for L• = 1. Further, at low tem- 
peratures a WKB approximation for the splitting between the energies of 
the ground state and the first excited state allows for a direct evaluation of 
the importance of domain walls on the thermodynamics of the finite-size 
systems. The correction to the free energy due to the splitting caused 
by domain walls is extremely small; quasiharmonic corrections are 
significantly more important. (16) 

2. F INITE-SIZE SCALING A N S A T Z  FOR F IRST-ORDER 
T E M P E R A T U R E - D R I V E N  T R A N S I T I O N S  W I T H  
C Y L I N D R I C A L  G E O M E T R Y  

We begin by reviewing the finite-size scaling hypothesis appropriate 
for temperature-driven, first-order transitions. The arguments for this 
ansatz follow by analogy from those presented for field-driven transi- 
tions(Y); we present both since the comparison to the well-developed field- 
driven case allows for the straightforward development of the temperature- 
driven finite-size scaling ansatz. 

The system size is taken to be Lil x L~-I;  we are interested in the limit 
that Lll is longer than all other length scales in the system. Furthermore, 
periodic boundary conditions are enforced in all directions. This assump- 
tion of cylindrical geometry is appropriate for the results of strip TM 
studies. 

In the limit Lll-o 0% there is no transition if L is finite. For suf- 
ficiently large L• however, we expect that the system will have properties 
approaching those of the bulk (L• --* oo) limit except in a narrow regime 
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near the first-order transition temperature T1, viz. the finite-size-affected 
regime. When L• is finite and T<  T1, the system is mainly composed of 
domains of the symmetry-broken phases; in equilibrium there are no 
macroscopically occupied regions of the high-temperature phase at tem- 
peratures well below T1 (see Fig. la). This will be demonstrated for our 
model in Section 4, and is consistent with the fact that coexistence only 
occurs in equilibrium exactly at the transition temperature. The domain 
walls form surfaces roughly perpendicular to the long direction (LII), 
and destroy long-range order for the finite-size system. We denote the 
characteristic spacing of these domain walls by r in anticipation of the 
notation in Section 3. This length is important  to the scaling properties of 
the system, and may be calculated using the TM formalism. General 
arguments (7"17) show that 

~l(L• d 1), a=flZ(T,L• (1) 

where Z(T, L• is the appropriate domain-wall free energy density, (7'!7) 
and is a function of field and/or temperature. It is believed that (v'18) 

and thus one writes 

W 
S ( L I ) - S ~  ~ d l l n L l  

L• 

t ~ L~_ exp(ao~ L~-  1) (2) 

r 
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Fig. 1. Schematic structure of domains of L_ x oe system (a) for T< T 1 and (b) for T~ Ta. 
The symbols + and - indicate broken symmetry states, and 0 indicates the high-temperature 
phase. The values a+ _, a+0, etc., indicate the appropriate reduced domain-wall free energy. 
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where Zoo and a~  are found from the L• ~ ~ limit. Note that this length 
diverges exponentially fast with L• 

All of this is similar to the field-driven case, where the transition must 
occur at H =  0 due to the symmetry of the Hamiltonian about H ~ - H .  
The length r is a maximum at zero field for fixed T <  To. The exponent 
w depends upon the boundary conditions in the perpendicular directions: 
for the field-driven first-order transition in the Ising model below To, exact 
results (7) demonstrate w = 1/2 for periodic boundary conditions and w = 0 
for free boundary conditions. 

For first-order symmetry-breaking transitions an additional length 
scale is important near the bulk transition temperature, which we now 
motivate. In our model, we shall consider the simplest case, i.e., there are 
only two low-temperature variants related by the symmetries of the 
Hamiltonian. The thermodynamic quantities do not show sharp, singular 
behavior, but instead show rounded behavior for a narrow range of tem- 
peratures near the transition. In this finite-size-affected regime, the system 
will be divided predominantly into domains of low- and high-temperature 
phases, with domain walls formed along (d-1)-dimensional  surfaces per- 
pendicular to the long Lil direction (see Fig. lb). We denote the charac- 
teristic spacing of these walls by r this is the second important length 
scale. For L• finite we define the temperature TI(L• to be the tem- 
perature at which 42 is a maximum. As in Eq. (2), this length is governed 
by the appropriate domain-wall free energy, and diverges exponentially 
with L . .  The domain wall spacings satisfy ~1 > ~2 for finite L• As will be 
demonstrated later, it is the length 42 (or, more generally, the shortest of 
the diverging length scales) that is most important in understanding the 
finite-size-affected regime near T~. Note also that, unlike 41, ~2 diverges as 
L• ~ oo only at a unique temperature T =  TI(L• which converges to the 
transition temperature. In the Lz  --* oo limit, 41 is infinite for all T~< T 1 due 
to the twofold degeneracy of the low-temperature phase. 

With this introduction, we are prepared to present the formulation of 
the finite-size scaling ansatz. We develop the temperature-driven case by 
comparison with the well-established field-driven ease. (7'~7) For the field- 
driven case, the singular part of the reduced Gibb's free energy density may 
be expressed as 

G s A 
gs(H; L:_, Lii ) = T V -  V I7I/H B(T)hLd-X~I, , h=--~ (3) 

where the volume is V =  Ltl Ld-1 and Gs is the singular part of the total 
free energy. The scaling function l~H(y, Lll/~l) is universal, and B(T) and 
A are nonuniversal amplitudes; A is assumed to be temperature inde- 
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pendent. Since g, is intensive in the infinite-volume limit, ~VH(y , Lll/~1) 
must be linear with LIF/~ 1 as Lll diverges. Then, the free energy becomes 

A 
g,(H;L• d-l~ Wn[B(T) hLd-Ir (4) 

L•  1 

In a similar fashion, for the temperature-driven case the free energy is of 
the form 

A 
gs(T;L~)= d- WT[B(T) tL~ 1~2] (5) 

L• 142 

where the reduced temperature t (viz., what drives the transition) is defined 
to be 

T -  TI(L• 
t-- (6) 

TI(L• 

Note that the scaling combinations given in Eqs. (4) and (5) contain 
the characteristic volume L~ 14 2 instead of the volume of the system; this 
is due to the fact that we are letting LiE, and therefore the total volume, 
tend to infinity. We anticipate that the size of single-phase domains will be 
on the order of this characteristic volume near the transition. 

We now express the parameter B(T) in terms of physical quantities by 
relating the above scaling form to the appropriate susceptibilities. We 
expect that g, is a local maximum at the transition. Then, for the field- 
driven transition, the susceptibility at h = 0 is 

= - A L ~ - I ~ I B 2 ( T ) I ) V ~ , ( 0 )  (7) 
z -  VkaH~), ,=o 1 

Note that the susceptibility may also be written in terms of spin-spin 
correlations as 

1 
z =-V-~E (O,~j)- (~,5%53 (8) 

tj 

Let us make the crude approximation that particles are correlated over a 
length ~1 along the long direction, and are fully correlated perpendicular to 
this direction. We then assume that within a volume LaS l~1 the fluctua- 
tions are related to the spontaneous magnetization mo(T ) by 

(s,sj) - ( s , ) ( s j )  ~m2o(f) (9) 
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and that outside of this volume the correlations are negligible. Using 
translational invariance, we can write the susceptibility as 

rn~(T) a - ~  (10) z = ~ L ~  1 

which leads to the desired identification 

B2(T) = - m~(T) (11) 
A Wh(0) 

In the case of the temperature-driven transition, the relevant suscep- 
tibility is the specific heat. At T =  T,, this is defined as 

T1(02G)  
Cv(T1) = - g  ~ r 2 ;  = - A L d  l~2B2(T) W~(0) (12) 

In terms of the energy fluctuations this quantity is given by 

1 
c, = ~)T2 ~.. (6Ei 6Ej) (13) 

tj 

where 6Ei = E i -  (Ei)  is the deviation of the energy of particle i from the 
average energy per particle. We assume that the fluctuations in energy are 
on the order of the bulk ordering energy for correlated sites (within a 
volume L~-132), and zero otherwise: 

( 6Ei (~Ej) ~ 12 (14) 

Here, 1 is the bulk latent heat per particle. These arguments yield 

1~ l 2 
~(r~) = L~ ,2 7.2 (15) 

Comparison with the scaling form of the heat capacity then gives 

B2(T) = (AS) 2 
AW~-(O) 

(16) 

where AS = I/TI(L• converges to the change of entropy per particle at the 
transition as L• --* or. 

These results combine to produce the well-known scaling ansatz (7) 

A 
gs Ld_I~ WH(Yh), yh=-hmo(T) L a - ~ ,  (17a) 

�9 1 
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for the field-driven case. Similarly, for the temperature-driven transitions, 
the above results lead us to the finite-size scaling ansatz 

A 
g" - Ld_ 1~. 2 Wr(y,), y, ~ t AS L ~ - ~  (17b) 

Note that the scaling variables Yh and Yt incorporate the intuitive combina- 
tion of the ratio of the bulk ordering energy (viz., the driving energy per 
particle times the characteristic domain size) to the thermal energy T. It is 
these combinations that determine the range in which finite-size effects are 
significant, viz., the finite-size-affected regime. 

The scaling variable Yt provides an estimate for the width of this 
regime near the transition temperature T~. For lY,I--.oo we expect 
W r ( y , ) ~  lytl. Rounding is to be expected in a regime determined by 
y~~ 1, as discussed in ref. 7. From Eq. (17b) this defines the temperature 
range 

TI(Lj_) 
3T~ (18) 

JS L~-i~2(r,) 

As previously indicated, ~ I(TI(L • vanishes exponentially fast with L• 
Thus the finite-size-affected range over which the rounding occurs 
decreases rapidly as a function of L• 

Having established these relations, we wish to demonstrate that they 
are applicable to a real symmetry-breaking transition. For the field-driven 
case, this has been done in considerable detail. (v'~v) To the best of our 
knowledge, these results have not been significantly tested for the 
symmetry-breaking case except for the 2D q-state Potts model with 
q~> 5. (1~ Finite-size scaling for the Potts model is considerably more 
complicated than the model presented below, due to the q + 1 degeneracy 
of the TM eigenvalues at the transition. Our analysis will be greatly sim- 
plified due to the symmetry of the Hamiltonian we are studying. We note 
that Eqs. (2) and (18) provide for a means of determining if a system is in 
a finite-size scaling regime. We verify that ~2(T1, L l )  has the form given in 
Eq. (2) and thereby calculate ~roo. Furthermore, we demonstrate that 
appropriate thermodynamic quantities for systems with different L• 
collapse to a single curve when expressed as a function of the scaling 
variable defined in Eq. (17b), as should be expected from the scaling 
ansatz. 

822/67/3-4-4 
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3. DEFIN IT ION OF M O D E L  A N D  TRANSFER M A T R I X  
F O R M A L I S M  

In order to examine the finite-size scaling ansatz presented in 
Section 2, we study a model originally proposed for the study of structural 
phase transitions. (12) The model is characterized by the Hamiltonian 

: ~ Vo,(U,) + ~ Vc(u~, uj) (19) 
i <0> 

where 

k o~ 2 
Vc(ui ,  blj) = ~ (U i -- uj )  2 -J- ~ (U i -~ Ll2)(bli-  Uj) 2 (20) 

and Vos(Ui) is the on-site potential. The scalar variable ui is the displace- 
ment of a particle at the lattice site i. The notation <0') indicates a sum 
over near-neighbor pairs; we consider only periodic boundary conditions. 
The on-site potential has been chosen to be the simplest on-site potential 
that will show a symmetry-breaking first-order transition, (12) the so-called 
~b 6 potential as a function of only one scalar variable: 

A 2 B C 6 Vos(U)= u (21) 

This potential is shown schematically in Fig. 2. Note that this potential 
is invariant under u ~ -u .  The parameters A, B, and C are positive and 
independent of temperature, i.e., this is a microscopic, not effective, 
Hamiltonian. By choosing the on-site length scale such that the absolute 
minima are at Uo = +_1, the on-site potential is specified by an energy scale 

iooo! 

500 

VosfU)  ] -- --E ....... 

-500 i i L 

-1 0 1 

U 

Fig. 2. The nonlinear on-site potential energy Vow(u). 
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and by the ratio of the energy of the barrier (reiative to the energy of 
the metastable minimum) to the energy at u = uo. We have specified the 
energy scale by setting the barrier energy to Ebarrier= 300. Choosing 
Ebarrier/Ewell = 1 defines the shape of the potential. At low temperatures the 
system will be localized in the side wells; at high temperatures the system 
is localized in the center well. The relevant order parameter is the average 
particle displacement (u) .  Two limits of this model are examined: the 
5-state discrete version, in which u can take on the values + 1, + 1/2, and 
0, as well as the continuum case - oo < u < 0% relevant to structural trans- 
formations. 

For the special case c~ = 0 in the continuum limit, this model has only 
harmonic coupling between sites. Including the anharmonic coupling 
changes the effective harmonic coupling between the low- and high-tem- 
perature phases. This change in dispersion is an important feature of many 
structural phase transitions, (121 which typically undergo a large change in 
the phonon entropy at the transition. (2~ To understand how this new term 
changes the effective coupling, consider a linearized theory: in the high- 
temperature phase, the mean-square displacement (u 2) is small, and the 
anharmonic piece of the intersite coupling may be neglected. The intersite 
coupling then reduces to a harmonic form with force constant k. At low 
temperatures, when (u 2) ~ 1, the effective harmonic coupling between sites 
is ,-~k + ~. Thus, the effective coupling force between particles in the low- 
temperature phase is higher than that of the high-temperature phase. (The 
appropriate magnitude of this intersite coupling constant, based on experi- 
ment, is discussed elsewhere. (I3~) Although this argument is simplistic, a 
self-consistent harmonic calculation reproduces the exact thermodynamic 
quantities, found from the transfer matrix (TM) formalism, to a 
remarkable degree, (13) and confirms the above scenario. Higher-order 
corrections to this pseudoharmonic theory are the predominant source of 
error, (~6~ and in the displacive limit are less than a few percent. In the fully 
two-dimensional limit, the system in equilibrium will be completely 
representable by a quasiharmonic phonon theory, despite the essentially 
nonlinear features of the model associated with the transition. Experimen- 
tal results demonstrate that this is in agreement with real systems. (2~ 

In the finite-size system, nonlinear excitations connecting the different 
phases will be macroscopically occupied in a temperature regime near the 
transition. (13~ To understand this regime in real systems and how it changes 
as the system size increases, it is necessary to study a relevant model in the 
scaling regime. The above model with the new coupling provides an 
excellent model for studying the finite-size effects: the inclusion of the new 
term with sufficiently large (but physically reasonable) c~ causes the system 
to be in the scaling regime even for La = 1. This remarkable result will be 
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demonstrated more fully in Section 4. We examine the harmonic e = 0 case 
and also the anharmonic case with nonzero c~. 

In order to study the equilibrium properties of the system, we use the 
TM formalism which has been developed to evaluate configurational parti- 
tion functions for systems that are infinite in one direction and finite in 
d -  1 directions. We present here a short introduction to the formalism; for 
a more complete review, along with applications to finite-size scaling, see 
the review by Nightingale. (al) We consider a two-dimensional system of size 
Lll x La ,  with Lll--* oo. The state of each particle may be either discrete 
(TM) or a continuous variable (transfer integral). We indicate the state of 
a particle at row i and column j by u,j. As the TM and transfer integral 
(TI) formalisms are virtually identical, only the TM formalism will be 
presented. 

The configurational partition function is defined to be 

Z =  ~ exp-flg4F({u~}) (22) 

where the sum is over all possible configurations of {u~}, In order to 
simplify this equation, we first label the state of a row of particles by x j, 
thus specifying the configuration of all L• particles. Note that if each 
particle has m distinct states, the number of allowed configurations for xj 
is m L'. The Hamiltonian may then be written in the form 

LII 

~ =  E Vl(Xi)~ V2(xi, X i + l )  (23)  
i - 1  

The TM is defined to be 

T(x,, xj) = exp{ - fi[�89 Vl(xi) + �89 V,(xj)  + V2(xi, xj)] } (24) 

As the TM is real and symmetric, it has real eigenvalues 2~. We are free 
to label our eigenvalues such that 

, '~0>21 > , ~ , 2 >  "'" />0  (25) 

Enforcing periodic boundary conditions along the "parallel" direction 
enables us to write the configurational partition function as 

Z = ~" 2• L' (26) 
n 

Assuming that 2 o is not degenerate with the other eigenvalues, the partition 
function is, in the thermodynamic limit, 

Zi~l, ~ ~ = 2~ II = e -aa(Ll'LI0 (27) 
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This gives a reduced Gibbs free energy per particle of 

G 1 
g In 2o (28) 

L l l L •  T L •  

Thermodynamic quantities, such as the specific heat, entropy, and internal 
energy, may be determined from the temperature derivatives of g. 

We also define the TM correlation lengths ~j, j =  1, 2 ..... by the 
relation 

~ j l  _ _ln()v/2o ) (29) 

Note that if we define the reduced energies [in analogy to Eq. (28)] 

1 
gs  - - - -  in 2j (30) 

Lz 

then the inverse correlation lengths correspond to the differences between 
the reduced energies per strip. 

When two or more phases may coexist, the dominant eigenvalue 
becomes degenerate, the degeneracy being equal to the number of possible 
phases. (17) The first-order phase transition is associated with a crossing of 
eigenvalues/7.~4,17) Equivalently, one or more of the correlation lengths ~j 
become infinite [Eq. (29)]. For symmetry-breaking transitions, the fact 
that ~ becomes infinite for T~< T1 in the bulk limit is consistent with the 
fact that the symmetry-broken states have identical free energies. This 
will not occur for systems of finite size; however, in the scaling regime, 
there will be n e a r  degeneracies, with associated eigenvectors related to 
probabilities in the various phases. The correlation lengths that diverge as 
L• ~ oe are the length scales corresponding to the domain wall separation. 
These correlation lengths are the appropriate lengths that were introduced 
in Section 2. 

In Fig. 3c the reduced energies g s =  - (1 /L•  j = 0 ,  1, 2, are 
shown for our continuum model with ~=k=40 ,000  and L •  1 as a 
function of temperature (to be discussed more fully in Section 4). Here, 
the near degeneracy is apparent: note that the function go corresponding to 
the true free energy shows a rounded cusp in the "mixing" (viz., the finite- 
size-affected) region. The indicated inverse correlation lengths ~ 1  and 
~21 both vanish as L• oe. We note that ~2 is the correlation length 
associated with domain walls between center and side wells, as discussed in 
Section 2. These walls will have lower associated free energy than domain 
walls between the symmetry-broken states. This, along with Eq. (2), 
indicates that 42 < ~1" 
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For finite L• the dominant eigenvalue will be nondegenerate at all 
T >  0 (i.e., there will be no phase transition), except in the Lx ~ m limit, 
where the system is fully two dimensional. (22) (For Hamiltonians with con- 
tinuous symmetries, there is no transition except in fully three-dimensional 
systems/z~)) To understand the avoided crossings in the finite-size system, 
it is useful to consider a simplified form of the TM similar to those 
discussed in refs. 14 and 17. At T =  TI(L• the TM is (in the appropriate 
basis) 

7"= 20 diag(1, e -~71, e-~-~l,...) (31) 

-1.25 

-1.50 

gn -1.75 

- 2 . 0 0  
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Fig, 3. 
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For sufficiently large L• we know that for our system 42 > 43 because ~3 
remains finite as L• diverges; this suggests a phenomenological reduction of 
the matrix to a 3 x 3 form, where the L• -+ oc limits of the eigenvalues are 
mixed (due to the formation of domain walls) in the finite-size system. As 
we will show, this reduction utilizes the symmetries of the Hamiltonian and 
incorporates the loss of long-range order in finite systems due to domain 
wall formation. From this reduced TM we form an explicit expression for 
the free energy that approaches the correct limit away from the finite-size- 
affected regime, and has a singular part that obeys the scaling ansatz 
presented in Section 2. 

In Fig. 1 we have denoted the reduced energy densities for domain 
walls between regions with ( u ) >  0 and ( u ) =  0 as a+o, between different 
low-temperature phase variants as ~+_ ,  etc. Imposing the symmetries of 
the Hamiltonian, specifically -~({uu}) -+ J{'({ - uu}), generates relations 
between the domain-wall free energies: 

0"+0=0" 0=0"0_ =0"0+ ~ 0"+_ =G + (32) 

We thus suggest the approximate form of the TM (17) 

T = e  L~gL Aa e -L '~g 2 , A g - g ~ ( r ) - g c ( T )  (33) 

Zl 1 Zl 2 

where the basis vectors (1 0 0) r and (0 0 1) r represent the low-tem- 
perature phase variants, and (0 1 0) r represents the high-temperature 
phase. One may picture each of these corresponding to Gaussian order- 
parameter distributions P(u) centered in the appropriate local minimum of 
the on-site potential. The function gL(T) corresponds to the Gibbs free 
energy of the bulk system for T <  T1, and the function gH(T) is the.free 
energy for the bulk system for T >  T1. Note that both functions are 
analytic throughout their complementary temperature domains, and thus 
are defined over the entire temperature range. The "mixing parameters" are 

1 
AI = 2  ~ f - l ~ e x p ( _ a + _ L •  

1 
z/2 - 7 -  {2 '  ~ exp ( - - a+oLl )  

2 ,/2 

(34) 

Furthermore, we expect on physical grounds that a+_  > ~r +o. This implies 
that A 1 <{ Az. 
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To elucidate the motivation for this form, we first block-diagonalize 
this matrix using the unitary transformation 

0 - 

This transformation expresses the TM in a basis which includes symmetric 
and antisymmetric combinations of vectors representing the two variants of 
the low-temperature phase as well as the (necessarily symmetric) high- 
temperature phase. The irreducible form of the TM is then 

/ / I + A I  x/2A2 00 ) (36) 

0 1 -zJ 1 

Noting that we expect A1 to be very small, this form shows that the domi- 
nant mixing in the region of the transition ( A g ~ O )  is due to A2. The 2 x 2 
block is identical in form to the form argued for the field-driven case, (7'17~ 
if we neglect A1. This indicates that the dominant finite-size effects near T 1 
are due to the formation of domain walls between the high- and low-tem- 
perature states. Thus, although there is three-phase coexistence in the bulk 
limit, the predominant finite-size effects near TI can be understood by con- 
sideration of only two eigenvalues of the TM, viz. the largest eigenvalues 
associated with eigenvectors that are invariant under the symmetries of 
the Hamiltonian. In general, a similar reduction will occur for systems 
breaking a p-fold degeneracy, with the dominant mixing due to the 
shortest of the diverging length scales, namely ~p. 

Diagonalizing the above matrix in terms of the variable 

x = [ ( l + z l ~ - e  L ~ g ) z + 8 A ~ ] l / 2  (37) 

we find the eigenvalues 

2o=�89 L •  C~ag+x)  

21 = e-C• -- AI) (38) 

5~2= 1 -/~,L(1 -~e + A 1 -~ e -L~-Ag- x)  

We examine these results for three limiting cases. 
In the limit that e -L• is small, i.e., gL< g~/, we find 

x = 1 + A1 -- e-Ll  ~g + C(A 2, e-2C~ ~g) (39) 
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The reduced energies g j -  - L ~  1 In )~/are then 

go = gL--A1 + (9(A 2, e 2LiAg) 

gx = gL+A1 + 0(A2) (40) 

g2 = g~ + (9(A~, e -2L• Ag) 

Thus, at low temperatures, the actual free energy go is very close to that 
of the bulk system. 

The second case, appropriate when T >  TI and therefore gn > gL, is 
when 8--L• 1. In this case, the reduced free energies are 

go = gH + (9(A~, e 2Ll Ag) 

g~= gL+A~ + C(A 2) (41) 

gz = g L -  A1 + (9(A 2, e2L• ~g) 

These are identical to the values in the low-temperature case [Eq. (40)], 
except that the true free energy go now corresponds to the high-tem- 
perature phase. 

Lastly, near the transition where the functions gL and gn cross, the 
value of e -L~Ag will be nearly equal to 1. Denoting the entropies of the 
low- and high-temperature phases by SL and S/4, respectively, we have 

gL --- gb(T1) -- tSL + C(t2), gI4 = gb (T 1 ) -  tSH + (-9(t 2) (42) 

where gb(Ta) is the bulk free energy at the transition. The eigenvalues, to 
lowest order in t, are 

t 1 y2+ 1 
g o = g b ( T 1 ) - - ~ ( S L + S H )  - AI 2L~_~2 ' 

+ 

g~ = gb(T~) -- tSL + A1 + (9(A 2) (43) 

g2 = gb(Tx )---~ (SL + SH) 2 --2 1 + ~  Yt + 1 

+ (9(A2 2 1,A2) 

Here, we have used the scaling variable y , =  t A S L •  as defined in 
Eq. (17b). Note that go and g2 are both singular in the L• oc limit, 
though both also contain identical analytic contributions. The nonanalytic 
contributions are given by 

1 2 
gs -=g~  L-~2  y , + l  (44) 
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which has the scaling form given in Eq. (17b). This demonstrates how the 
analytic function go is rounded over a range specified by 42, which is deter- 
mined from the reduced domain wall energy. As L• diverges, this function 
approaches the singular bulk free energy gb(T) specified by 

gb(T) = min(gL, gH) (45) 

4. N U M E R I C A L  TESTS OF FINITE-SIZE SCALING 

4.1. Cont inuum Case, L •  

We present the 1D continuum limit in order to demonstrate that the 
model has near degeneracies in its TM spectrum, as discussed in the 
preceding section. Furthermore, this serves to make the above concepts 
more concrete. The narrow rounding regime of the transition in the L• = 1 
limit shows why this model is ideal for studying finite-size effects in 
first-order symmetry-breaking transitions. This remarkable behavior of the 
model in one dimension has been previously noted. (13~ 

The spectrum has been calculated by discretizing the one-particle 
states and then calculating the dominant eigenvalues of the associated TM 
via the conjugate gradient method. (21) We tested the convergence of the 
transition temperature and ~21 versus the number of discrete states, and 
found that a minimum of 25 states were required before the results were 
essentially independent of the number of states. We have chosen the 
parameters of the model so that the scaling as a function of L I  may be 
easily demonstrated: it is important to realize that these parameters may be 
chosen so that the 1D results are arbitrarily close to a true transition. (13) 
Specifically, increasing the coupling constants k and c~ has the effect of 
narrowing the finite-size-affected regime to an arbitrarily small amount by 
decreasing the value of 321. Our particular choice of parameters allows for 
eigenvalues that are very nearly degenerate, while still maintaining numeri- 
cal accuracy. Note that for L• = 1, the inclusion of the anharmonic 
coupling term is necessary (cf. Fig. 3) for the system to show the behavior 
close to that of a true transition. This will be rigorously proved in the 
analytic treatment of the 1D system presented in Section 5. 

Figure 3 shows the free energies gj = - l n  2j corresponding to the three 
dominant values of the TM spectrum, for La  = 1 and ~ = 0, k/2, k. The 
effect of e is to reduce TI(L•  as well as to reduce the gap ~2 -1. Corre- 
sponding to this reduced gap, the finite-size-affected regime is smaller, as 
indicated in Eq. (18). There are two reasons the reduction of ~-1 is to be 
expected. First, the increased coupling suggests that the domain walls will 
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have a higher energy. More importantly, increasing the value of e lowers 
the entropy of the low-temperature phase. This stabilizes the high-tem- 
perature phase, as demonstrated by the lower transition temperature. The 
decreased transition temperature increases the reduced domain wall energy 
significantly. As ~2 grows exponentially with this reduced energy, the finite- 
size-affected regime becomes very narrow--this is the reason that e makes 
the model reach the scaling regime for small L:_. 

One of the most important quantities that we are concerned with is 
the probability for finding a strip in the state x~; this is given by 

P ( x i )  ~- I~b0(xi)] 2 (46) 

where ~b0(xi) is the eigenvector corresponding to the dominant eigenvalue. 
As xi specifies the states of Lz particles in the strip i, P(xi) is a joint 
probability. To find the probability of finding a particular particle in a 
given state uo., it is necessary to integrate out the possible configurations of 
the other particles within the strip. Specifically, we have 

P(uij) = ~ P(xi  = {Uil"''UiL2 }) (47) 
{Uik,k ~ j} 

For the L• = 1 system the eigenfunction ~b0(u) corresponding to go is 
the probability amplitude of finding a particular particle with a displace- 
ment u, i.e., P(u)= ]~b0(u)] z. This eigenfunction, shown in Fig. 4a, indicates 
that at low temperatures the system is localized in the side wells of the 
potential; at higher temperatures, the system will be predominantly located 
in the center well. The eigenfunction ~bl(u ) is shown in Fig. 4b. At low tem- 
peratures the eigenvalue 21 is very nearly degenerate with 2o, becoming 
fully degenerate at T=  0 in one dimension and at T= T1 in two dimen- 
sions. The structure of these eigenfunctions is entirely consistent with the 
idea of the mixing of two symmetry-broken probability amplitudes due to 
the finite size of the system. In Fig. 4c, the third eigenfunction ~b2(u) is 
shown. For T ~  TI (Lz  = 1) we see the evidence of the mixing of the sym- 
metric eigenfunctions ~b0(u) and ~bz(U), in strong agreement with the 
phenomenological form in Eq. (33). This mixing occurs only in the finite- 
size-affected regime near T1. The multiple peaks at u = _+1 and at u = 0 
indicate that this is the coexistence regime. Again, this supports the 
phenomenological form Of the TM given in Eq. (33). One clearly sees the 
band repulsion produced by the symmetric-symmetric coupling. For tem- 
peratures near T1, but outside of the finite-size-affected regime, the overlap 
of the probability densities ~b~(u) and q~(u) will be small. In the bulk limit, 
there will be no overlap except at TI, indicating the lack of joint occupa- 
tion between the two phases away from the transition. (2) 
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4.2. Five-State Case 

In order to demonstrate the scaling form in the crossover to two 
dimensions we initially examine the five-state case. This is the limit in 
which there are only five discrete states that the local order parameter may 
assume: uo= _+1, +0.5, 0. Due to the limited number of states in this case, 
the numerics is more convenient than for the continuum case. We are effec- 
tively limited to L• ~ 6 due to the size of the TM. We first establish that 
there is a first-order transition for the 5-state case, and also that the scaling 
ansatz given in Eq. (17b) is valid even for small L• To do this, we show 
the entropy as a function of temperature for each value of L• in Fig. 5 as 
a function of the scaling variable Yl given in Eq. (17b). Clearly, as L• 
increases, the data collapse onto a single curve, with the entropy changing 
rapidly over the range AT [cf. Eq. (18)].  As discussed in Section2, this 
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Fig. 4. (a) Transfer matrix eigenfunction r for the L:_ = 1 case, at T <  T1 (top graph), 
T ~  T1 (center graph), and T >  T 1 (bottom graph). (b) Same as (a), but ~bl(u ). (c) Same as 
(a), but ~2(u). 
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temperature range vanishes exponentially fast as a function of L• Thus, in 
the L• ~ oo limit, there will be a discontinuity in the entropy at 
T =  TI(L=). This verifies that a first-order transition occurs in the bulk 
limit. In Table I we also show T 1, ~21, and AT [-as defined in Eq. (18)] as 
a function of L• For  :r = k, the reduction of d T is quite dramatic. 

To test the scaling form of the correlation length 32, we write Eq. (2) 
in the form 

In ~2(TI(L• L . )  = C +  w In(L_) + oo~L• (48) 

Figure 6 shows the fit to this form, for the harmonic coupling case cr = 0 
and for the anharmonic cases ~ = k/2 and :~ = k. Clearly, the fit is good in 
all cases. The limiting slope in the large-L_ limit is larger for ~ = k than for 
:~ = 0 by a factor of ,-~ 5. This increase in rr ~ causes a dramatically increased 
value for r this strongly decreases the temperature range over which the 
finite-size effects are significant, viz. the finite-size-affected region. Thus, we 
see that the anharmonic coupling brings the system into this regime by 
increasing the interfacial free energy of domain walls between the high- and 
low-temperature phases. 

One feature of Fig. 6 that is perplexing is the positive curvature, which 
implies from Eq. (48) that the exponent w is negative; this seems counterin- 
tuitive. Again, note that for the field-driven transition in the Ising model, 

Table I. Transit ion Temperature,  Inverse Domain-Wal l  Correlation Length, 
and Wid th  of Fini te-Size-Affected Regime Versus L• for Five-State Sys/~em 

L l  T1 ~21 AT 

k = ~ =40,000; AS = 0.256 

1 2588.0 0.0478003 483.0 
2 4785.0 0.03415 319.0 
3 5627.0 0.01133381 83.0 
4 5848.0 0.002585 14.8 
5 5905.8 0.0005132 2.37 
6 5921.10 0.0000996 0.384 

k = 40,000; ~ =0;  AS = 0.3 

1 2180.0 0.118817 870.0 
2 4170.0 0.113577 790.0 
3 5300.0 0.09291 550.0 
4 5809.0 0.0713878 350.0 
5 6070.0 0.05369 210.0 
6 6210.0 0.0396 130.0 
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Fig. 6. Fit of In ~ll for ~ = 0, ~ = k/2, and ~ = k for the five-state model. The limiting slopes, 
correspond to the reduced interracial energies, are a ( ~ = 0 ) = 0 . 4 0 3 ,  a ( c ~ = k / 2 ) =  1.60, and 
a (e  = k) = 2.21. 

the exponent has the value w = 1/2. Part of this may be explained by noting 
that each data point is at a different temperature, and this may significantly 
affect the surface free energy. Also note that the scaling of cr(L• is different 
than the actual scaling of the domain-wall free energy per length, as this is 
the domain-wall free energy divided by the cross-sectional length L• In 
general, the interpretation of a(L•  is difficult: in the exactly solvable 
model, (3~ the analogous quantity is neither a domain-wall free energy nor 
an inverse bulk correlation length. Although we believe that for our model 
this quantity is associated with the domain-wall free energy, further study 
is necessary to understand its approach to the bulk limit. 

4.3. Continuum Limit, L• I>1 

Now that we have demonstrated the effectiveness of the scaling ansatz 
[Eq. (17b)] in describing the effects of finite L•  we return to the con- 
tinuum limit. In this limit the vibrational entropy effects of the new term 
discussed in Section 3 are relevant. We are limited to L• = 1, 2, 3, again 
due to the size of the TM. In Table II, we show T1, 42, and A T as a func- 
tion of L• for the continuum model. Note that AT(L• = 3) is five orders 
of magnitude less than AT(L• = 1) for the c~=k case; for c(=0, the reduc- 
tion is a mere factor of two. Comparison of this with Table I shows several 
noteworthy points. First, for a given L• the rounding regime is much 
smaller for the continuum model. Also, the transition temperature is 
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Table I1. Transition Temperature, Inverse Domain-Wall Correlation Length, 
and Width of Finite-Size-Affected Regime Versus L• for Continuum System 

L• T 1 ~F 1 A T  

k = e =40,000; AS=0.37 

1 702.375 0.0061659076 11.6 
2 763.90 0.00008231 0.0855 
3 795.05610 0.000000882 0.000632 

k = 40,000;~ = 0; AS  = 0.05 

1 1172.0 0.09071 2126.0 
2 2128.0 0.07769 1653.0 
3 2850.0 0.0711 1350.0 

considerably lower. We attribute the lower transition temperature to the 
relatively high vibrational entropy in the high-temperature phase; this does 
not play a role in the five-state case. Due to the significantly lower 
transition temperature, the reduced surface free energy a~ is considerably 
larger for the continuum case than for the five-state model. Fitting 42 to the 
form in Eq. (48) gives a value for ~oo that is roughly five times that of the 
five-state model. This increased value explains the smaller value of ~ 21 and 
therefore the narrow rounding regime [-cf. Eq. (18)]. 

To demonstrate that the finite-size scaling ansatz is satisfied extremely 
well for this model, Fig. 7 shows (u 2) versus the scaling variable y, intro- 
duced in Eq. (17b). In the L• ~ oc limit, this will have a discontinuity at 
the transition. The curves for L l =  1, 2, 3 are quite close, proving the 

Fig. 7. 
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Average square order parameter <U2> versus scaling variable y, for the continuum 

model, for L• = 1, 2, 3. 
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validity of the ansatz in describing our system. Note that (b/2) rapidly 
approaches the T =  0 value (u 2) = 1, indicating that the transition will be 
strongly first-order. 

It is instructive to note that  the latent heat of the cont inuum model  is 
very close to the energy difference between the absolute min imum and the 
metastable min imum of the on-site potential. This result is independent  of  
c~, and is due to the fact that  the system behaves like a harmonic  solid away 
from the transition: (~3'16) in either the low- or high-temperature phase, the 
average potential  energy per particle is approximately  �89 above the 
appropr ia te  min imum in Vos(u), so that  the difference in internal energies 
between the phases is quite close to the T =  0 difference, Ew~ u. 

In ref. 12 it was noted that P(u) showed heterophase fluctuations near 
the temperature T1. In L a  = 2 and 3 the convergence to the bulk limit, 
where the fluctuations vanish, is becoming clear. Figure 8 shows P(u) at 
T=TI(L• for L •  and2 .  Note  that  while the indications of 
heterophase fluctuations are clear for L•  = 1, there are no such indications 
for L•  = 2 - - such  fluctuations only occur over a temperature range given 
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Fig. 8. (a) Probability distribution P(u) for L• = 1 at T= T 1 - 3 (top graph) and T= T 1 + 3 
(bottom graph). (b) Probability distribution P(u) for L• = 2 at T= T 1 - 3  (top graph) and 
T= T 1 + 3 (bottom graph). 
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approximately by A T(La)  around the temperature T~(L• As suggested 
elsewhere, (2) and rigorously shown here (see Section 3), there are no 
heterophase fluctuations away from the transition temperature for systems 
in thermodynamic equilibrium. 

5. T H E  P S E U D O - S C H R ( S D I N G E R  A P P R O A C H  

For the continuum model, an analytic approach to the TI has been 
developed (24-26~ for the so-called strong-coupling limit. This work has 
primarily concentrated on the sine-Gordon chain and the one-dimensional 
~4 system. For these cases, a phenomenology has been developed for the 
statistical mechanics incorporating both phonon excitations as well as non- 
linear topological excitations, viz. a dilute soliton gas. By proper incorpora- 
tion of the total degrees of the system, and including the effect of kinks on 
the phonon density of states, the phenomenological free energy associated 
with the kinks is identical to the splitting between the dominant eigen- 
values. (26'27) This demonstrates that the gap between dominant eigenvalues 
is indeed due to domain wails, as argued previously. 

By following a similar approach, we shall demonstrate that for the 
continuum model in one dimension, the TI eigenvalue problem can be 
reduced to a one-dimensional Schr6dinger equation in the strong-coupling 
or "displacive ''(15) limit. We write the on-site potential in the form 

Vos(u) = VoV(u), ff'(u) = _ (u 2 -  l) 2 (u2+Eg) (49) 

to introduce the characteristic energy scale Vo. Note that the value VoEg 
is equal to the well depth Ewell indicated in Fig. 2. The displacive limit 
corresponds to 

(• 
d -  \ v 0 /  >>1 (50) 

The parameter d is a length scale (relative to the lattice spacing) that deter- 
mines the importance of the lattice discreteness. In the limit d~> 1 the 
displacement u only changes by small amounts between lattice sites and 
therefore may be considered a continuous function of position along the 
lattice. 

In terms of the symmetric kernel 

1 
K(ui, u,+ 1) - ~ Vo[ P(u,) + ~'(u, + 1)] + ~ k ( u , -  ui+ 1) 2 

+ ~ (u~ + uL 1)(~i - Ui+l )2 



Finite-Size Study of First-Order Transition 497 

the TI eigenvalue problem is 

f clu, K(ui. u,+ 1) ~.(ui)  = & # . ( u i +  1) (51) 

In the Appendix, we demonstrate that for large d and small c~/k this may 
be reduced to the form of a pseudo-Schr6dinger equation 

2m* Ox 2 + V(x) + V(T) + ~Tx 2 (~(x) = e~(~,,(x) (52) 

representing a particle of mass m* in an effective potential 

vo~(x) = ~(x) + v( r )  + �89 2 (53) 

(Clearly, this is similar to a Landau form for the free energy.) The variables 
in Eq. (52) are defined as 

2V0 l n ( ~ - ~ \  K / ~ m*=kV~ V(T) = - T , ~2 = 2k V-----~ ' (54) 

The eigenvalues e, of the pseudo-Schr6dinger equation are related to the 
values of 2, by 

,~n = exp(-~Voen) (55) 

Note that this definition is equivalent to 

T 
e, = ~ g, (56) 

where g,  are the reduced energies from Eq. (30). The free energy of the 
system is given by 

G/N= Voeo (57) 

Thus, for the one-dimensional model, finding the free energy of the system 
is equivalent to finding the ground state associated with the pseudo- 
Schr6dinger equation. (Note that a similar approach has been used to 
derive the exponent w for the Kac model; (28) however, a similar calculation 
does not appear possible for this model.) 

It is useful no note some formal aspects of the pseudo-Schr6dinger 
equation at this point. The usual models that have been studied using this 
technique have had only harmonic intersite couplings, i.e., e = 0. In this 
case, the differences between eigenvalues are universal functions of the 
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combination m*= kVo/T2; the effect of changing either k or Vo on gaps 
in the spectrum is merely the result of rescaling energies. The anharmonic 
coupling creates a new, adjustable energy scale that directly affects the 
physics of the problem, viz. the energy gaps, and allows for the study of 
finite-size effects for small L• 

The simplest way to understand the features of the spectrum of the 
pseudo-Schr6dinger equation is by simple estimates for the ground-state 
energy. At low temperatures (large rn*) we may find approximate solutions 
by assuming that the system is isolated in one of the side wells. We may 
then approximate the potential Veff by the harmonic form 

voff(x) vod + l )+  �89 + l)(x-T 1) 2 (58) 

The approximate ground-state energy resulting from this is 

1 [V;~f(+ 1!] m (59) 
8,iae ~ V ( T ) + V e ~ ( - 1 ) + ~ L  m* J 

Similarly, a separate approximate solution corresponds to the particle 
located in the central well. Approximating the potential by 

1 - X 2 V~tr(x) ~ Ve~(0) + 5 V;ff(0) (60) 

we obtain the resulting energy 

�9 1 [ - V ; ' ~ ( 0 ) - I  1/2 
12center  -  / + V(r )  (61) 

These values correspond to the free energy of the model within the 
harmonic approximation. The curvature of P(u) near u=  +1 is greater 
than that near u = 0  (roughly by a factor of four); therefore these two 
solutions cross at a temperature T1 given by 

'/2 
e +5-L kVo J=4-~o TI-t-v k-g~ J (62) 

Equation (62) provides an estimate of T1 for the 1D system, demonstrating 
that the transition temperature is strongly affected by the strength of the 
anharmonic coupling. Note that the parameter e only affects the side-well 
solution; by including e, the estimated transition temperature is lowered. 
As the zero-point energy of the side-well states is higher than that for 
the center-well state, an upper bound on T~ may be made by neglecting the 
"zero-point" energy. This gives the estimate Eg ~ ~T1/4kVo, which gives the 
approximate behavior T1 < 4EgkVo/c~, proving that T~ ~ 0 as e diverges. In 
Fig. 9, the prediction for T~ from Eq. (62) is shown as a function of elk. 
This shows the correct qualitative behavior: the high-temperature phase 



Finite-Size Study of First-Order Transition 499 

700 

T~ 500 

300 I 
1 

Fig. 9. Transi t ion temperature  T 1 for the 1D model as a function of ~/k, predicted using 
Eq. (62). 

may be stabilized to arbitrarily low temperatures by choosing a sufficiently 
large ~. 

In the true spectrum, there is no level crossing (as discussed in Sec- 
tion 3). Near TI, the symmetric linear combination of side-well states mixes 
with the symmetric, nodeless central well state, forming the gap related to 
~21 [see Eq. (43)]. The gap in the spectrum between these levels may be 
calculated using the WKB approximation. We assume that we may con- 
struct approximate solutions r (even in x and localized in the side 
wells) and @center(X) (localized in the central well). At T =  TI these have the 
same (approximate) energy e. We define x0 and x2 to be the classical 
turning points (29) specified by 

V(xo) = ~'(x2) = e, 0 < X o < X 2 <  1 (63) 

The tunnel splitting of the states produces the approximate eigenfunctions 

1 
r  = ~ [ r  -I- r  

(64) 
1 

r (x) = ~ [r r 

(see Fig. 4). Within the WKB approximation, the gap between these levels 
is given by 

2 
~; - -  ~ + - -  -- { [-/; - -  Vef f (Xmin) ] (~  - -  Eg) } 1/2 - / r  

f (2kVo)l/2 [~2 dx;  x exp ~ [ V~ff(x) - ~] 1/'2 (65) 
( 3~ o J 
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where Xrnin is the position of one of the absolute minima of the effective 
potential V, ff(x). Note that e reduces T1 and also 5. Both of these effects 
reduce the gap; the lowered transition temperature is the dominant effect. 
This expression gives a formal result displaying the reduction of the gap 
r due to the anharmonic intersite coupling. As indicated previously, this 
reduction of T1 is due to the lowered vibrational entropy in the low- 
temperature phase when e is nonzero. Figure 10 shows that the value of the 
gap ~ ; l ( T l ) = ( e _ - e + ) V o / T  1 decreases rapidly as a function of c~/k, 
providing for the narrow finite-size-affected regime for L• = 1. Increasing 
reduces T1, allowing for an arbitrarily small gap. Thus, by properly 
choosing ~, one can find the 1D system arbitrarily close to a transition. 

The above gap is the dominant finite-size effect, providing for the 
rounding in the affected regime near the transition temperature T1. At 
lower temperatures the finite size of the system prevents long-range order 
in the system. However, this has a significantly smaller effect on the ther- 
modynamic quantities than the rounding near T1; this may be understood 
by utilizing the pseudo-Schr6dinger equation. For T ~  T1 the important 
splitting is between the ground state and the first excited state [cf. 
Eq. (40)]. Again, we assume that approximate wave functions may be 
constructed: in this case, the two wave functions are r localized 
in the left well, and ~right(X)-~-~left(--X), localized in the right well. The 
symmetric and antisymmetric levels are split by an amount 

As = - exp [ Veff(x) - ~] 1/2 dx  (66) 
rc T - 0  

Here, Xo satisfies 

~'(Xo) = e, 0 < Xo < 1 (67) 

0,1 

0.01 

0.001 

\ \  
\ \ \  

I b 
o 1 2 

c~/k 

Fig. 10. Inverse correlation length 42 1 as a function of ct/k, predicted using Eq. (65) 
(solid line) and numerical TM results (dashed line). 
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The integral in the exponential in Eq. (66) may be compared to the kink 
energy for the c~ = 0 case, (25'26~ 

f 
l 

Ekink = (2kVo)  1/2 VI/2(X) dx (68) 
i 

The similarity between these expressions demonstrates that the gaps are 
indeed related to the domain walls. (25'26) The differences have been inter- 
preted as the finite-temperature renormalization of the domain wall 
energy. (26, 30) 

We make the rough approximation 

Ae ~ - exp 
~z T1 J 

and note that Ekink/T1 .~ 15 for our choice of parameters, 
estimate for the gap at the transition: 

to obtain an 

zJ~ 
- - < 1 0  -7 (69) 

This is much smaller than the gap related to d~ -1, demonstrating that this 
splitting has negligible effects on the free energy. It is important to note 
that this small correction is the dominant  nonperturbative correction to the 
ground-state energy at low temperatures, though it vanishes rapidly as 
T ~  0. Note further that choosing the parameters of the model such that 
the finite-size-affected regime is smaller will reduce the above estimate 
significantly. This demonstrates that the important corrections to the ther- 
modynamic quantities in the harmonic approximation are due to local 
anharmonicities, not domain wall formation. Furthermore, as indicated in 
the previous sections, this low-temperature splitting decreases rapidly as a 
function of L• so that in the 2D limit the system is comple te ly  describable 
using the appropriate perturbation theory. Thus, we may expect that the 
free energy of the system may be calculated quite accurately by treating the 
anharmonicities as perturbations. Explicit calculations have demonstrated 
the rapid convergence of a second-order variational perturbation theory to 
the exact free energy. (16~ 

6. D ISCUSSION 

In this work we have shown that the exact thermodynamics of our 
L• x oe model undergo scaling behavior in accordance with the ansatz 
presented in Section 2, even for small L• This ansatz, a generalization of 
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the established ansatz appropriate for transitions with no broken sym- 
metry, incorporates the simple idea that the finite-size scaling is controlled 
by the shortest of the diverging length scales ~n derived from the transfer 
matrix. The arguments leading to this are supported by a phenomenologi- 
cal form of the transfer matrix; the form presented in Section 3 for our 
system is appropriate for the broken u ~ - u  symmetry, but is easily 
generalized. This phenomenological form allows for an analytic continua- 
tion of the free energy into the metastable regime. (14) 

The scaling ansatz gives an expression for the width of the finite-size- 
affected regime where the rounding of the transition occurs. This, along 
with the identification ~=exp[L• provides for a simple under- 
standing of the scaling behavior of our model. The rounding width is 
governed solely by the change of entropy at the transition (i.e., the reduced 
latent heat l/T1), and by the reduced surface free energy cr associated with 
domains between the high- and low-temperature phases, In the case where 
the on-site displacement u is a continuous variable, the transition tem- 
perature is considerably lowered by anharmonic couplings which decrease 
the entropy of the low-temperature phase and thereby stabilizes the high- 
temperature phase. This decreased entropy is caused by the suppression of 
small-amplitude displacements about the absolute minima. By lowering the 
entropy of the low-temperature variants, the high-temperature phase is 
thermodynamically more stable, causing a lower transition temperature T1. 
This increases the reduced domain wall energy a(T= T1)=  S/T1 
significantly; the width of the finite-size-affected regime is decreased both 
by this and also by the increased change in entropy. The discrete version 
of the model lacks these small-amplitude, low-energy displacements; thus 
the exact calculations show that the anharmonic couplings have a less 
dramatic effect for this situation (cf. Tables I and II). 

The model is also useful in examining how coexistence only occurs in 
the finite-size-affected regime. The order-parameter distribution P(u) shows 
multiple peaks only within this regime, consistent with work studying 
hypercubic systems. (5) This leads to the inevitable conclusion that the 
incipient transition will not be detectable outside of the finite-size-affected 
regime for a pure system in equilibrium; this regime will be extremely small 
(and usually inaccessible) for experimental realizations. Within this regime, 
nonlinear excitations such as domain walls are present. We believe that the 
study of such excitations will lead to a clearer understanding of the 
dynamics of the transition. The absence of precursors is interesting to com- 
pare with experimental work on structural transitions: although precursors 
have been widely observed, careful experiments on pure, high-quality 
crystals show no evidence of heterophase fluctuations. (2~ 

Our model is ideal for the study of the dynamical properties associated 
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with first-order transitions, especially those in which there is no diffusion of 
atoms. The narrowness of the rounding regime allows for the study of the 
transition for systems of small L• which would have direct implications 
concerning nucleation in the full 2D systems. Also, this model is ideal for 
studying the finite-size effects on the decay of metastability, which is not 
fully understood. (31~ Furthermore, the Landau-like form of Eq. (53) 
suggests that we could obtain a similar rapid approach to the first-order 
behavior though choosing an on-site potential that has no metastable 

minimum, i.e., a ~b 6 potential with a negative second-order coefficient. We 
have indeed shown that this may occur in the appropriate parameter range. 
This will allow further studies of the dynamics of a system quenched into 
an unstable regime. 

Although not presented here, it is useful to note that much of the equi- 
librium properties may be understood by a variational form of the free 
energy which models the system as a harmonic solid. ~13'16) These results 
reproduce the exact free energy to within ~0.1%, with the accuracy 
increasing with L j .  This strongly suggests that in the bulk limit, there will 
be no nonlinear excitations relevant to the bulk free energy except at the 
transition temperature T1. Furthermore, even for the finite-size systems, 
differences between the variational free energy and the exact results are 
predominantly anharmonic perturbative corrections./16) 

Molecular dynamics simulations of the system have demonstrated the 
importance of the nonlinear excitations to the transitions; these simulations 
reproduce exact thermodynamic quantities shown here, and reconfirm our 
conclusions. For larger systems, the harmonic description is verified by the 
simulations both by thermodynamic results and by dynamic structure fac- 
tors. Real-space analsis of trajectories show the importance of intrinsically 
nonlinear, nontopological "breather" excitations in the nucleation process. 
These results will be presented in detail elsewhere. (16) 

A P P E N D I X .  R E D U C T I O N  OF THE TI E Q U A T I O N  TO A 
P S E U D O - S C H R O D I N G E R  F O R M  

We write the transfer-integral eigenvalue problem, Eq. (51), in the 
form 

,LG(u,+,) 

=exp [- ~ flVos(Ui+ l)] f dui (exp {- ~ fl[k(ui-u,+ :)2] } 

x exp {-fl [4 (u2 + u2i+ l)(ui-ui+ l)2 + ~ Vos(Ui)]l (bn(ui) ) (A.1) 
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We need to simplify the integral 

+e p[  ,21 
(A.2) 

To do this, we change variables to z -  y -  x: 

 J)s,z;x, 
Vo~(~ + x)J ~z;xt=exp[ ~(2~2+ 2xz+z~-~ 

(A.3) 

Using this along with the identity 

z 2 t ~72 
(A.4) 

allows us to write the transfer integral problem as 

{exp ( T  02"~ \2kt?z2jexp [-  fl---~ (2xZ + 2xz +zZ)z 2 

-~-2 v~ + x)] O~ + x)}z=o 

x (2--~-) l/Zexp [-  ~ flVoP(X) ]= 2~On(x) (A.5) 

The left-hand side may be simplified using the operator identity 

eAe~=exp(A+B+�89 [A, B]]  + .--) (a.6) 

We neglect terms of C(d 2 ~ Vo/k ) in the displacive limit. Furthermore, we 
also neglect terms of (9(o~T/k2), which is appropriate at low temperatures. 
With these approximations, Eq. (A.5) becomes 

(2rcT)'/"exp -/~Vos(X)~ 4~x 2 ~b,,(x)=2,,~b,,(x) (A.7) 

Using Eq. (25), we may define the variables ~, by 

2, = exp(-flVoe~) (A.8) 



Finite-Size Study of First-Order Transition 505 

Defining 

T In '~ 2 k V o '  V ( T ) =  -2---~o ' - 

we arrive at the equat ion 

2m ~ c~x2 ~- ~ ~b,~(x) 

= e x p ( - f l V o e , )  ~ , ( x )  

Thus, the functions q~(x) satisfy the pseudo-Schr6dinger  equat ion 

l 0 2 1 2) 
2m* c~x 2 F ~ ' (x )+  V ( T ) + 5 ~ T x  ~b,,(x)=e,,~b,,(x) 

(A.IO) 

(A.11) 
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